ASSIGNMENT SET - I

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

B.Sc Hon. (CBCS)

Mathematics: Semester-VI

Paper Code: C13T

[Metric Spaces and Complex Analysis]

Complex Analysis

1. Answer all questions

a) Show that $\lim _{z \rightarrow 2 i} \frac{z^{x}+4}{z-2 i}=4 i$
b) If $f(z)=\left\{\begin{array}{c}\frac{x^{3} y(y-i x)}{x^{6}+y^{2}}, z=0 \\ 0, z=0\end{array}\right.$

Prove that $\frac{f(z)-f(0)}{z-0} \rightarrow 0$ along any radius vector but not as $z \rightarrow 0$ in any manner.
c) Show that $f(z)=|z|^{2}$ continuous for all $z \in C$.
d) Let $f(z)=|z|^{2}$. Show that the derivable of $f(z)$ exist only at the origin.
e) Let $f(z)=\left\{\begin{array}{c}\frac{|z|}{\operatorname{Re}(z)} \text { if } \operatorname{Re}(z) \neq 0 \\ 0 \text { if } \operatorname{Re}(z)=0\end{array}\right.$, show that f is not continuous at $z=0$

2. Answer all questions

a) Define analytic function. State and prove the necessary condition for $f(z)$ to be analytic. Does the condition is sufficient? Give an example.
b) Prove that the function $f(z)=\left\{\begin{array}{c}\frac{x^{2}(1+i)-y^{3}(1-i)}{x^{3}+y^{2}}, z \neq 0 \\ 0, z=0\end{array}\right.$ satisfy Cauchy-Riemann equation at $z=0$ but $f^{\prime}(z)$ does not exist there.
c) Examine the nature of the function

$$
f(z)=\left\{\begin{array}{c}
\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}} \text { for } z \neq 0 \\
0 \text { for } z=0
\end{array}\right. \text { at the origin. }
$$

d) State and prove the sufficient condition for $w=f(z)=u(x, y)+i v(x, y)$ to be analytic.
e) Derive the polar form of CR equation.
f) Show that an analytic function with constant modulus is constant.
g) If $f(z)$ is an analytic function of z, then prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{z}}{\partial y^{2}}\right)[\operatorname{Re} f(z)]^{2}=2\left|f^{\prime}(z)\right|^{2}
$$

h)Define Cauchy Riemann equation, Harmonic function.
i) Prove that $\nabla^{2} \equiv 4 \frac{\partial^{z}}{\partial z \partial \bar{z}}$
j) If $f(z)=u(x, y)+i v(x, y)$ is an analytic function then u and v are both harmonic function.
k) Show that the function $u=\cos x \cosh y$ is harmonic and find its harmonic conjugate function v.

1) Prove that $u=e^{-x}(x \sin y-y \cos y)$ is harmonic. Find v such that $f(z)=u+i v$ is analytic.
m) Prove that the function $\mathrm{u}=e^{x}(x \cos y-y \sin y)$ satisfies Laplace's equation and find the corresponding analytic function $f(z)=u+i v$.
n) If $=x^{3}-3 x y^{2}$, show that there exists a function $v(x, y)$ such that $f(z)=u+i v$ is analytic in a finite region.

3. Answer all questions

a)State and prove Cauchy's integral formulae.
b) Evaluate on $\mathrm{C}: ~ \oint \frac{e^{a z}}{(z+1) 4} d z$, where C is the circle $|z|=3$.
c) State Laurent's theorem and hence define the removable singularity, pole and isolated essential singularity.
d) Find the residue of function $f(z)=e^{-e^{1 / z}}$ at $z=0$.
e) Evaluate $\int_{|z+1|=2} \frac{z^{n}}{4-z^{2}} d z$
f) Find the value of $\oint_{|1-z|=1} \frac{a^{z}}{z^{z}-1} d z$.
g)Let C be the counter clockwise oriented circle of radius $\frac{1}{2}$ centered at i. Then find the value of contour integral $\oint \frac{d z}{z^{4}-1}$ on C.
h) Let y be the positively oriented circle in the complex plane given by $\{z$ $\in \mathrm{C}:|z-1|=1\}$. Then find the value of $\frac{1}{2 \pi i} \int_{Y_{z^{3}-1}} \frac{d z}{}$.
i) Let γ be the positively oriented circle $\{z \in \mathbb{C}:|z|=3 / 2\}$. Suppose that $\int_{Y} \frac{\varepsilon^{i \pi z}}{(z-1)(z-2 i)^{2}} \mathrm{~d} z=2 \pi i C$. Then find the value of $|C|$.

4. Answer all questions (MCQ)

a) The power series $\sum_{0}^{\infty} 2^{-n} z^{2 n}$ converges if
(A) $|z| \leq 2$
(B) $|z|<2$
(C) $|z| \leq \sqrt{2}$
(D) $|z|<\sqrt{2}$
b) The power series $\sum_{0}^{\infty} 3^{-n}(z-1)^{2 n}$ converges if
(A) $|z| \leq 3$
(B) $|z-1|<\sqrt{3}$
(C) $|z-1| \leq \sqrt{3}$
(D) $|z|<\sqrt{3}$
c) Consider the power series $\sum_{1}^{\infty} z^{n I}$. The radius of convergence of the series is
(A) 0
(B) ∞
(C) 1
(D) a real number greater than 1.
d) Consider the power series $\mathrm{f}(\mathrm{x})=\sum_{n=2}^{\infty} \log (n) x^{n}$. Find the radius of convergence.
e) Let γ be the positively oriented circle in the complex plane given by, $\left\{z \in \mathrm{C}:|z-1|=\frac{1}{2}\right\}$, the line integral $\int_{Y} \frac{z^{\varepsilon^{1} / z^{2}} d z}{z^{z}-1}$ equals __. (A) $\mathrm{i} \pi e(\mathrm{~B}) \pi e(\mathrm{C})-\mathrm{i} \pi$

Metric Space

1. Answer all questions

a) Show that every Cauchy sequence in a metric space is bounded, but the converse is not true.
b) Prove that a convergent sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in (X, d) is a Cauchy sequence. Give an example to show that a Cauchy sequence need not be convergent in an arbitrary metric space.
c) Define Cauchy sequence in a metric space. Prove that every convergent sequence is a Cauchy sequence.
d) For any two points $\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b}$ in a metric space (X, d), show that

$$
|d(x, y)-d(a, b)| \leq d(x, a)+d(y, b)
$$

e) Prove that the discrete space (X, d) is a complete metric space.
f) Let (X, d) be a metric space, Prove that the union of an arbitrary collection of open sets of X is open.
g) Prove that a finite set has no limit point.
h) Let (X, d) be any metric space, show that the function $\mathrm{d}_{1}(\mathrm{x}, \mathrm{y})=\frac{d(x, y)}{1+d(x, y)}, \forall \mathrm{x}, \mathrm{y}$ $\in X$ is a metric on X.
i) Show that every open sphere is an open set but not conversely.
j) Prove that any closed subset of a complete metric space is complete.
k) Prove that limit of a sequence in a metric space, if exists, is unique.

1) Prove that any closed subset of a complete metric space is complete.
$\mathrm{m})$ When is a metric said to be complete? Give an example of an incomplete metric space.
